Hopf Bifurcation in an Oscillatory-Excitable Reaction-Diffusion Model with Spatial Heterogeneity

نویسنده

  • Benjamin Ambrosio
چکیده

We focus on the qualitative analysis of a reaction-diffusion with spatial heterogeneity near a bifurcation. The system is a generalization of the well known FitzHugh-Nagumo system in which the excitability parameter is space dependent. This heterogeneity allows to exhibit concomitant stationary and oscillatory phenomena. We prove the existence of an Hopf bifurcation and determine an equation of the center-manifold in which the solution asymptotically evolves. Numerical simulations illustrate the phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory Waves in an Inhomogeneous Excitable Medium

An excitable medium is a nonlinear dissipative dynamical system able to sustain undamped wave propagation. Examples of excitable media include cardiac tissue and neural media. This thesis investigates a class of novel dynamical phenomena in excitable media, known collectively as oscillatory waves. The examples of oscillatory waves considered here are Tango waves, breathers and pulse generators....

متن کامل

Transition from oscillatory to excitable regime in a system forced at three times its natural frequency.

The effect of a temporal modulation at three times the critical frequency on a Hopf bifurcation is studied in the framework of amplitude equations. We consider a complex Ginzburg-Landau equation with an extra quadratic term, resulting from the strong coupling between the external field and the unstable modes. We show that, by increasing the intensity of the forcing, one passes from an oscillato...

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference

In this paper, the spatial, temporal and spatiotemporal dynamics of a reaction–diffusion predator–prey system with mutual interference described by the Crowley–Martin-type functional response, under homogeneous Neumann boundary conditions, are studied. Preliminary analysis on the local asymptotic stability and Hopf bifurcation of the spatially homogeneous model based on ordinary differential eq...

متن کامل

Front explosion in a resonantly forced complex Ginzburg–Landau system

Periodically forced oscillatory reaction–diffusion systems near the Hopf bifurcation can be modeled by the resonantly forced complex Ginzburg–Landau equation. In the 3:1 resonant locking regime this equation has three stable fixed points corresponding to the phase-locked states in the underlying reaction–diffusion system. Phase fronts separate spatial domains containing the phase-locked states....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017